Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Endocrinol (Lausanne) ; 13: 919223, 2022.
Article in English | MEDLINE | ID: covidwho-1987483

ABSTRACT

Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Influenza, Human , Respiratory Tract Infections , Tuberculosis , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , SARS-CoV-2
2.
Front Immunol ; 12: 770066, 2021.
Article in English | MEDLINE | ID: covidwho-1518490

ABSTRACT

Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient's history of health, and new therapeutic options identified.


Subject(s)
COVID-19/immunology , Inflammation/immunology , Influenza A virus , Influenza, Human/immunology , Obesity/immunology , SARS-CoV-2 , Animals , Humans , Severity of Illness Index
3.
Clin Infect Dis ; 72(12): e1146-e1153, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269565

ABSTRACT

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n = 213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a pediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate in pediatric household contacts was assessed. The secondary attack rate in pediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Family Characteristics , Humans , Incidence , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL